
Foundations of Differentiable Programming in
Probabilistic Models

Jiaxin Shi
Microsoft Research New England

Differentiable Programming

2

Differentiable Programming

• a new paradigm that has become popular in machine learning, especially in deep
learning

2

Differentiable Programming

• a new paradigm that has become popular in machine learning, especially in deep
learning

• (over-)parameterized models trained in an end-to-end fashion to minimize a loss
function

2

Differentiable Programming

• a new paradigm that has become popular in machine learning, especially in deep
learning

• (over-)parameterized models trained in an end-to-end fashion to minimize a loss
function

• Models are differentiable. Training is through gradient-based optimization.

2

Why Differentiable Programming?

3

Mnih et al. 13; Jumper et al. 21; Dosovitskiy et al. 20

Why Differentiable Programming?

3

Mnih et al. 13; Jumper et al. 21; Dosovitskiy et al. 20

Why Differentiable Programming?

3

Mnih et al. 13; Jumper et al. 21; Dosovitskiy et al. 20

Why Differentiable Programming?

3

Mnih et al. 13; Jumper et al. 21; Dosovitskiy et al. 20

Why Differentiable Programming?

3

• Expressiveness

Mnih et al. 13; Jumper et al. 21; Dosovitskiy et al. 20

Why Differentiable Programming?

3

• Expressiveness

rich enough to express complex
mechanisms

Mnih et al. 13; Jumper et al. 21; Dosovitskiy et al. 20

Why Differentiable Programming?

3

• Expressiveness

rich enough to express complex
mechanisms

• Compositionality

Mnih et al. 13; Jumper et al. 21; Dosovitskiy et al. 20

Why Differentiable Programming?

3

• Expressiveness

rich enough to express complex
mechanisms

• Compositionality

Models are easily composable to allow
end-to-end training

Mnih et al. 13; Jumper et al. 21; Dosovitskiy et al. 20

Why Differentiable Programming?

3

• Expressiveness

rich enough to express complex
mechanisms

• Compositionality

Models are easily composable to allow
end-to-end training

• Scalability

Mnih et al. 13; Jumper et al. 21; Dosovitskiy et al. 20

Why Differentiable Programming?

3

• Expressiveness

rich enough to express complex
mechanisms

• Compositionality

Models are easily composable to allow
end-to-end training

• Scalability

scales to high-dimensional inputs and
huge datasets on modern hardware

Mnih et al. 13; Jumper et al. 21; Dosovitskiy et al. 20

Probabilistic Modeling

4

Luo, Tian, Shi, Zhu & Zhang (NeurIPS’18)
Zhuo, Liu, Shi, Chen, Zhu & Zhang (ICML’18)

Shi, Titsias & Mnih (AISTATS’20)

5

Why Differentiable Programming in Probabilistic Models?

5

Why Differentiable Programming in Probabilistic Models?

• Classical probabilistic models in our toolbox (e.g., linear regression, conjugate
graphical models) can be significantly misspecified.

5

Why Differentiable Programming in Probabilistic Models?

• Classical probabilistic models in our toolbox (e.g., linear regression, conjugate
graphical models) can be significantly misspecified.

(the commitment to such models) “has led to irrelevant theory, questionable conclusions, and has kept
statisticians from working on a large range of interesting current problems”

5

Why Differentiable Programming in Probabilistic Models?

• Classical probabilistic models in our toolbox (e.g., linear regression, conjugate
graphical models) can be significantly misspecified.

(the commitment to such models) “has led to irrelevant theory, questionable conclusions, and has kept
statisticians from working on a large range of interesting current problems”

(algorithmic model like neural networks) “can produce more reliable information about the structure of the
relationship between inputs and outputs than data models”

5

Why Differentiable Programming in Probabilistic Models?

• Classical probabilistic models in our toolbox (e.g., linear regression, conjugate
graphical models) can be significantly misspecified.

(the commitment to such models) “has led to irrelevant theory, questionable conclusions, and has kept
statisticians from working on a large range of interesting current problems”

(algorithmic model like neural networks) “can produce more reliable information about the structure of the
relationship between inputs and outputs than data models”

• Use differentiable programming ideas to improve the situation?

Existing Attempts are Highly Model-Specific

6

Decoder
NN

z ∼ p(z)

x ∼ p(x | fθ(z))

VAE
z ∼ p(z)

x = fθ(z)

GAN

x′ ∼ pdata(x)

Gen

Disc Disc

Normalizing Flow

Encoder
NN

z ∼ p(z)

Invertible
NN

pX(x) = p(f −1
θ (x)) | det ∇f −1

θ (x) |

z ∼ q(z |x)

Existing Attempts are Highly Model-Specific

Lack of a unifying framework—algorithms are tailored to certain model class and
configurations.

6

Decoder
NN

z ∼ p(z)

x ∼ p(x | fθ(z))

VAE
z ∼ p(z)

x = fθ(z)

GAN

x′ ∼ pdata(x)

Gen

Disc Disc

Normalizing Flow

Encoder
NN

z ∼ p(z)

Invertible
NN

pX(x) = p(f −1
θ (x)) | det ∇f −1

θ (x) |

z ∼ q(z |x)

Existing Attempts are Highly Model-Specific

Lack of a unifying framework—algorithms are tailored to certain model class and
configurations.

6

Decoder
NN

z ∼ p(z)

x ∼ p(x | fθ(z))

VAE
z ∼ p(z)

x = fθ(z)

GAN

x′ ∼ pdata(x)

Gen

Disc Disc

Normalizing Flow

Encoder
NN

z ∼ p(z)

Invertible
NN

pX(x) = p(f −1
θ (x)) | det ∇f −1

θ (x) |

z ∼ q(z |x)

Ideal: One algorithm for all models

Existing Attempts are Highly Model-Specific

Lack of a unifying framework—algorithms are tailored to certain model class and
configurations.

6

Decoder
NN

z ∼ p(z)

x ∼ p(x | fθ(z))

VAE
z ∼ p(z)

x = fθ(z)

GAN

x′ ∼ pdata(x)

Gen

Disc Disc

Normalizing Flow

Encoder
NN

z ∼ p(z)

Invertible
NN

pX(x) = p(f −1
θ (x)) | det ∇f −1

θ (x) |

z ∼ q(z |x)

Real: One model for all tasks Ideal: One algorithm for all models

7

Why is Differentiable Programming in Probabilistic
Models Challenging?
Stochastic Gradient Estimation is Difficult

7

Why is Differentiable Programming in Probabilistic
Models Challenging?
Stochastic Gradient Estimation is Difficult

∇ϕ,θ𝔼X∼Pϕ
[L(fθ(X))]

7

loss function

Why is Differentiable Programming in Probabilistic
Models Challenging?
Stochastic Gradient Estimation is Difficult

∇ϕ,θ𝔼X∼Pϕ
[L(fθ(X))]

7

loss function

a differentiable program

Why is Differentiable Programming in Probabilistic
Models Challenging?
Stochastic Gradient Estimation is Difficult

∇ϕ,θ𝔼X∼Pϕ
[L(fθ(X))]

7

loss function

a differentiable program

Why is Differentiable Programming in Probabilistic
Models Challenging?
Stochastic Gradient Estimation is Difficult

∇ϕ,θ𝔼X∼Pϕ
[L(fθ(X))]

It appears everywhere:

7

loss function

a differentiable program

Why is Differentiable Programming in Probabilistic
Models Challenging?
Stochastic Gradient Estimation is Difficult

∇ϕ,θ𝔼X∼Pϕ
[L(fθ(X))]

It appears everywhere:

• fitting models to data by minimizing expected loss

7

loss function

a differentiable program

Why is Differentiable Programming in Probabilistic
Models Challenging?
Stochastic Gradient Estimation is Difficult

∇ϕ,θ𝔼X∼Pϕ
[L(fθ(X))]

It appears everywhere:

• fitting models to data by minimizing expected loss

• optimizing variational objectives

7

loss function

a differentiable program

Why is Differentiable Programming in Probabilistic
Models Challenging?
Stochastic Gradient Estimation is Difficult

∇ϕ,θ𝔼X∼Pϕ
[L(fθ(X))]

It appears everywhere:

• fitting models to data by minimizing expected loss

• optimizing variational objectives

• computing policy gradients for model-based reinforcement learning

7

loss function

a differentiable program

Why is Differentiable Programming in Probabilistic
Models Challenging?
Stochastic Gradient Estimation is Difficult

∇ϕ,θ𝔼X∼Pϕ
[L(fθ(X))]

It appears everywhere:

• fitting models to data by minimizing expected loss

• optimizing variational objectives

• computing policy gradients for model-based reinforcement learning

• …

Two Levels of Intractability

8

fθ X ∼ PϕY

Two Levels of Intractability

8

fθ X ∼ PϕY

∇ϕ,θ𝔼X∼Pϕ
[L(fθ(X))] = ∇ϕ,θ𝔼PY

[L(Y)]

Two Levels of Intractability

• Intractable expectation (sum/integration)

8

fθ X ∼ PϕY

∇ϕ,θ𝔼X∼Pϕ
[L(fθ(X))] = ∇ϕ,θ𝔼PY

[L(Y)]

Two Levels of Intractability

• Intractable expectation (sum/integration)
• Intractable density functions: could depend on .L pY(y)

8

fθ X ∼ PϕY

∇ϕ,θ𝔼X∼Pϕ
[L(fθ(X))] = ∇ϕ,θ𝔼PY

[L(Y)]

Today’s Talk

• Gradient Estimation for Discrete Expectations

• Titsias & Shi. (AISTATS’22)

• Shi, Zhou, Hwang, Titsias & Mackey. (In Submission)

• Gradient Estimation for Intractable Densities

• Shi, Sun & Zhu. (ICML’18)

• Zhou, Shi & Zhu. (ICML’20)

Gradient estimation for differentiable programming in probabilistic models

9

10

• Gradient Estimation for Discrete Expectations

• Titsias & Shi. (AISTATS’22)

• Shi, Zhou, Hwang, Titsias & Mackey. (In Submission)

• Gradient Estimation for Intractable Densities

• Shi, Sun & Zhu. (ICML’18)

• Zhou, Shi & Zhu. (ICML’20)

Today’s Talk
Gradient estimation for differentiable programming in probabilistic models

Why are Discrete Expectations Challenging?

11

Why are Discrete Expectations Challenging?

11

The easy part:
∇θ𝔼X∼Pϕ
[fθ(X)] = 𝔼X∼Pϕ

[∇θ fθ(X)]

—three options:∇ϕ𝔼X∼Pϕ
[f(X)]

Why are Discrete Expectations Challenging?

11

The easy part:
∇θ𝔼X∼Pϕ
[fθ(X)] = 𝔼X∼Pϕ

[∇θ fθ(X)]

—three options:∇ϕ𝔼X∼Pϕ
[f(X)]

• Exact expectation + autodiff

Why are Discrete Expectations Challenging?

11

The easy part:
∇θ𝔼X∼Pϕ
[fθ(X)] = 𝔼X∼Pϕ

[∇θ fθ(X)]

—three options:∇ϕ𝔼X∼Pϕ
[f(X)]

• Exact expectation + autodiff

Why are Discrete Expectations Challenging?

11

 -dim binary vector => terms to sumX : d 2d

The easy part:
∇θ𝔼X∼Pϕ
[fθ(X)] = 𝔼X∼Pϕ

[∇θ fθ(X)]

—three options:∇ϕ𝔼X∼Pϕ
[f(X)]

• Exact expectation + autodiff

Why are Discrete Expectations Challenging?

11

The easy part:
∇θ𝔼X∼Pϕ
[fθ(X)] = 𝔼X∼Pϕ

[∇θ fθ(X)]

—three options:∇ϕ𝔼X∼Pϕ
[f(X)]

• Exact expectation + autodiff

• Pathwise gradients: reparameterize :X ∼ Pϕ

Why are Discrete Expectations Challenging?

11

ϕ

f

X

ϕ

ϵ

g

f

ϵ ∼ ν

X ∼ Pϕ

The easy part:
∇θ𝔼X∼Pϕ
[fθ(X)] = 𝔼X∼Pϕ

[∇θ fθ(X)]

—three options:∇ϕ𝔼X∼Pϕ
[f(X)]

• Exact expectation + autodiff

• Pathwise gradients: reparameterize :X ∼ Pϕ

Why are Discrete Expectations Challenging?

11

ϕ

f

X

ϕ

ϵ

g

f

ϵ ∼ ν

X ∼ Pϕ

only works for continuous distributions

The easy part:
∇θ𝔼X∼Pϕ
[fθ(X)] = 𝔼X∼Pϕ

[∇θ fθ(X)]

—three options:∇ϕ𝔼X∼Pϕ
[f(X)]

• Exact expectation + autodiff

• Pathwise gradients: reparameterize :X ∼ Pϕ

Why are Discrete Expectations Challenging?

11

The easy part:
∇θ𝔼X∼Pϕ
[fθ(X)] = 𝔼X∼Pϕ

[∇θ fθ(X)]

—three options:∇ϕ𝔼X∼Pϕ
[f(X)]

• Exact expectation + autodiff

• Pathwise gradients: reparameterize :X ∼ Pϕ

• REINFORCE:  
∇ϕ𝔼X∼Pϕ

[f(X)] = 𝔼X∼Pϕ
[f(X)∇ϕlog pϕ(X)]

Why are Discrete Expectations Challenging?

11

The easy part:
∇θ𝔼X∼Pϕ
[fθ(X)] = 𝔼X∼Pϕ

[∇θ fθ(X)]

—three options:∇ϕ𝔼X∼Pϕ
[f(X)]

• Exact expectation + autodiff

• Pathwise gradients: reparameterize :X ∼ Pϕ

• REINFORCE:  
∇ϕ𝔼X∼Pϕ

[f(X)] = 𝔼X∼Pϕ
[f(X)∇ϕlog pϕ(X)]

Why are Discrete Expectations Challenging?

11

very high variance

The easy part:
∇θ𝔼X∼Pϕ
[fθ(X)] = 𝔼X∼Pϕ

[∇θ fθ(X)]

The REINFORCE Estimator

12

1
K

K

∑
k=1

f(xk)∇ϕlog pϕ(xk), x1:K ∼ Pϕ

The REINFORCE Estimator

REINFORCE with “baseline”

12

1
K

K

∑
k=1

f(xk)∇ϕlog pϕ(xk), x1:K ∼ Pϕ

The REINFORCE Estimator

REINFORCE with “baseline”

12

1
K

K

∑
k=1

(f(xk) − b)∇ϕlog pϕ(xk)

1
K

K

∑
k=1

f(xk)∇ϕlog pϕ(xk), x1:K ∼ Pϕ

The REINFORCE Estimator

REINFORCE with “baseline”

12

1
K

K

∑
k=1

(f(xk) − b)∇ϕlog pϕ(xk)

1
K

K

∑
k=1

f(xk)∇ϕlog pϕ(xk), x1:K ∼ Pϕ

Control Variates, 𝔼Pϕ
[b∇ϕlog pϕ] = 0

• “baseline” tracks the expected value of f(x)

The REINFORCE Estimator

REINFORCE with “baseline”

12

1
K

K

∑
k=1

(f(xk) − b)∇ϕlog pϕ(xk)

1
K

K

∑
k=1

f(xk)∇ϕlog pϕ(xk), x1:K ∼ Pϕ

Control Variates, 𝔼Pϕ
[b∇ϕlog pϕ] = 0

• “baseline” tracks the expected value of f(x)

• reduce variance by centering learning signal

The REINFORCE Estimator

REINFORCE with “baseline”

12

1
K

K

∑
k=1

(f(xk) − b)∇ϕlog pϕ(xk)

1
K

K

∑
k=1

f(xk)∇ϕlog pϕ(xk), x1:K ∼ Pϕ

Control Variates, 𝔼Pϕ
[b∇ϕlog pϕ] = 0

• “baseline” tracks the expected value of f(x)

• reduce variance by centering learning signal

• REINFORCE Leave-One-Out:

The REINFORCE Estimator

REINFORCE with “baseline”

12

1
K

K

∑
k=1

(f(xk) − b)∇ϕlog pϕ(xk)

1
K

K

∑
k=1

f(xk)∇ϕlog pϕ(xk), x1:K ∼ Pϕ

b =
1

K − 1 ∑
j≠k

f(xj)

Control Variates, 𝔼Pϕ
[b∇ϕlog pϕ] = 0

Proposition Define the two gradient estimators:

Then

RLOO:
1
K

K

∑
k=1

(f(xk)−
1

K − 1 ∑
j≠k

f(xj))∇ϕlog pϕ(xk)

R*:
1
K

K

∑
k=1

(f(xk)−𝔼X∼Pϕ
[f(X)])∇ϕlog pϕ(xk)

Var(RLOO) ≥ Var(R*)

13

There is room for improving the state-of-the-art REINFORCE estimators

Proposition Define the two gradient estimators:

Then

RLOO:
1
K

K

∑
k=1

(f(xk)−
1

K − 1 ∑
j≠k

f(xj))∇ϕlog pϕ(xk)

R*:
1
K

K

∑
k=1

(f(xk)−𝔼X∼Pϕ
[f(X)])∇ϕlog pϕ(xk)

Var(RLOO) ≥ Var(R*)

13

There is room for improving the state-of-the-art REINFORCE estimators

• potential direction: variance reduction for the leave-one-out baseline?

Proposition Define the two gradient estimators:

Then

RLOO:
1
K

K

∑
k=1

(f(xk)−
1

K − 1 ∑
j≠k

f(xj))∇ϕlog pϕ(xk)

R*:
1
K

K

∑
k=1

(f(xk)−𝔼X∼Pϕ
[f(X)])∇ϕlog pϕ(xk)

Var(RLOO) ≥ Var(R*)

13

Gradient Estimation for Discrete Expectations
Roadmap

14

Double Control Variates

A new framework for variance
reduction in REINFORCE-type
estimators

Discrete Stein Operators

A general recipe for building
flexible control variates for
discrete distributions

Titsias & Shi. Double Control Variates for Gradient Estimation in Discrete Latent-Variable Models. AISTATS 2022
Shi, et al. Gradient Estimation with Discrete Stein Operators. In Submission.

Double Control Variates

15

Double Control Variates

15

We start with

Double Control Variates

15

We start with

1
K

K

∑
k=1

(f(xk) + αb(xk))∇ϕlog pϕ(xk) − α𝔼X∼Pϕ
[b(X)∇ϕlog pϕ(X)]

Double Control Variates

15

sample-dependent baseline
We start with

1
K

K

∑
k=1

(f(xk) + αb(xk))∇ϕlog pϕ(xk) − α𝔼X∼Pϕ
[b(X)∇ϕlog pϕ(X)]

Double Control Variates

15

sample-dependent baseline
correction term

We start with

1
K

K

∑
k=1

(f(xk) + αb(xk))∇ϕlog pϕ(xk) − α𝔼X∼Pϕ
[b(X)∇ϕlog pϕ(X)]

Double Control Variates

15

sample-dependent baseline
correction term

We start with

1
K

K

∑
k=1

(f(xk) + αb(xk))∇ϕlog pϕ(xk) − α𝔼X∼Pϕ
[b(X)∇ϕlog pϕ(X)]

Idea: Treat as the effective objective function and apply leave-one-out:f(x) + αb(x)

Double Control Variates

15

sample-dependent baseline
correction term

We start with

1
K

K

∑
k=1

(f(xk) + αb(xk))∇ϕlog pϕ(xk) − α𝔼X∼Pϕ
[b(X)∇ϕlog pϕ(X)]

Idea: Treat as the effective objective function and apply leave-one-out:f(x) + αb(x)

1
K

K

∑
k=1

((f(xk)+αb(xk)) −
1

K − 1 ∑
j≠k

(f(xj)+αb(xj)))∇ϕlog pϕ(xk) − corr

Double Control Variates

15

sample-dependent baseline
correction term

“global” “local”

We start with

1
K

K

∑
k=1

(f(xk) + αb(xk))∇ϕlog pϕ(xk) − α𝔼X∼Pϕ
[b(X)∇ϕlog pϕ(X)]

Idea: Treat as the effective objective function and apply leave-one-out:f(x) + αb(x)

1
K

K

∑
k=1

((f(xk)+αb(xk)) −
1

K − 1 ∑
j≠k

(f(xj)+αb(xj)))∇ϕlog pϕ(xk) − corr

Double Control Variates

15

sample-dependent baseline
correction term

“global” “local”

 is a regression coefficient adapted online by minimizing variance.α

We start with

1
K

K

∑
k=1

(f(xk) + αb(xk))∇ϕlog pϕ(xk) − α𝔼X∼Pϕ
[b(X)∇ϕlog pϕ(X)]

Idea: Treat as the effective objective function and apply leave-one-out:f(x) + αb(x)

1
K

K

∑
k=1

((f(xk)+αb(xk)) −
1

K − 1 ∑
j≠k

(f(xj)+αb(xj)))∇ϕlog pϕ(xk) − corr

1
K

K

∑
k=1

((f(xk) + αb(xk)) −
1

K − 1 ∑
j≠k

(f(xj) + αb(xj)))∇ϕlog pϕ(xk) − corr

Double Control Variates

16

1
K

K

∑
k=1

((f(xk) + αb(xk)) −
1

K − 1 ∑
j≠k

(f(xj) + αb(xj)))∇ϕlog pϕ(xk) − corr

Double Control Variates

16

Desired properties of the sample-dependent baseline:

1
K

K

∑
k=1

((f(xk) + αb(xk)) −
1

K − 1 ∑
j≠k

(f(xj) + αb(xj)))∇ϕlog pϕ(xk) − corr

Double Control Variates

16

Desired properties of the sample-dependent baseline:

• The correction term has an analytical form.

1
K

K

∑
k=1

((f(xk) + αb(xk)) −
1

K − 1 ∑
j≠k

(f(xj) + αb(xj)))∇ϕlog pϕ(xk) − corr

Double Control Variates

16

Desired properties of the sample-dependent baseline:

• The correction term has an analytical form.

b(x) = f(μ) + ∇f(μ)⊤(x − μ), μ = 𝔼Pϕ
[X]

1
K

K

∑
k=1

((f(xk) + αb(xk)) −
1

K − 1 ∑
j≠k

(f(xj) + αb(xj)))∇ϕlog pϕ(xk) − corr

Double Control Variates

16

Desired properties of the sample-dependent baseline:

• The correction term has an analytical form.

b(x) = f(μ) + ∇f(μ)⊤(x − μ), μ = 𝔼Pϕ
[X]

canceled

1
K

K

∑
k=1

((f(xk) + αb(xk)) −
1

K − 1 ∑
j≠k

(f(xj) + αb(xj)))∇ϕlog pϕ(xk) − corr

Double Control Variates

16

Desired properties of the sample-dependent baseline:

• The correction term has an analytical form.

b(x) = ∇f(μ)⊤(x − μ), μ = 𝔼Pϕ
[X]

1
K

K

∑
k=1

((f(xk) + αb(xk)) −
1

K − 1 ∑
j≠k

(f(xj) + αb(xj)))∇ϕlog pϕ(xk) − corr

Double Control Variates

16

Desired properties of the sample-dependent baseline:

• The correction term has an analytical form.

• requires no extra evaluation of f

b(x) = ∇f(μ)⊤(x − μ), μ = 𝔼Pϕ
[X]

1
K

K

∑
k=1

((f(xk) + αbk(xk)) −
1

K − 1 ∑
j≠k

(f(xj) + αbj(xj)))∇ϕlog pϕ(xk) − corr

Double Control Variates

17

Desired properties of the sample-dependent baseline:

• The correction term has an analytical form.

• requires no extra evaluation of f

bk(x) = (1
K − 1 ∑

j≠k

∇f(xj))
⊤
(x − μ), μ = 𝔼Pϕ

[X]

1
K

K

∑
k=1

((f(xk) + αbk(xk)) −
1

K − 1 ∑
j≠k

(f(xj) + αbj(xj)))∇ϕlog pϕ(xk) − corr

Double Control Variates

17

Desired properties of the sample-dependent baseline:

• The correction term has an analytical form.

• requires no extra evaluation of f

bk(x) = (1
K − 1 ∑

j≠k

∇f(xj))
⊤
(x − μ), μ = 𝔼Pϕ

[X]

 can be obtained “for free” from the same backpropagation to compute the
gradients .
{∇f(xk)}K

k=1 θ
∇θ fθ(x)

1
K

K

∑
k=1

((f(xk) + αbk(xk)) −
1

K − 1 ∑
j≠k

(f(xj) + αbj(xj)))∇ϕlog pϕ(xk) − corr

Double Control Variates

17

Desired properties of the sample-dependent baseline:

• The correction term has an analytical form.

• requires no extra evaluation of f

bk(x) = (1
K − 1 ∑

j≠k

∇f(xj))
⊤
(x − μ), μ = 𝔼Pϕ

[X]

 can be obtained “for free” from the same backpropagation to compute the
gradients .
{∇f(xk)}K

k=1 θ
∇θ fθ(x)

Quadratic Loss Example

18

, where max
η

𝔼X∼Pη [1
d

d

∑
i=1

(Xi − 0.499)2] pη(x) =
d

∏
i=1

σ(ηi)xi(1 − σ(ηi))1−xi

The Quest for More Flexible Control Variates

19

The Quest for More Flexible Control Variates

19

• Control variates are effective only when they are strongly correlated with the original
statistic

The Quest for More Flexible Control Variates

19

• Control variates are effective only when they are strongly correlated with the original
statistic

• Zero variance is achieved with αb(x) = f(x)

The Quest for More Flexible Control Variates

19

• Control variates are effective only when they are strongly correlated with the original
statistic

• Zero variance is achieved with αb(x) = f(x)

• Ideally, would like a very flexible control variate that can be adapted online to
minimize the variance

The Quest for More Flexible Control Variates

19

• Control variates are effective only when they are strongly correlated with the original
statistic

• Zero variance is achieved with αb(x) = f(x)

• Ideally, would like a very flexible control variate that can be adapted online to
minimize the variance

• Still, they need to have analytic expectations

Stein Operators
Computable functionals that generate zero-mean functions

20

Definition A Stein operator takes input function and outputs mean-zero functions
under distribution :

A h
Q

Stein Operators
Computable functionals that generate zero-mean functions

20

Definition A Stein operator takes input function and outputs mean-zero functions
under distribution :

A h
Q

 𝔼X∼Q[(Ah)(X)] = 0

Stein Operators
Computable functionals that generate zero-mean functions

20

Definition A Stein operator takes input function and outputs mean-zero functions
under distribution :

A h
Q

 𝔼X∼Q[(Ah)(X)] = 0

Stein Operators
Computable functionals that generate zero-mean functions

20

holds for in a flexible function classh

Definition A Stein operator takes input function and outputs mean-zero functions
under distribution :

A h
Q

 𝔼X∼Q[(Ah)(X)] = 0

Stein Operators
Computable functionals that generate zero-mean functions

20

holds for in a flexible function classh

analytic expectations

Definition A Stein operator takes input function and outputs mean-zero functions
under distribution :

A h
Q

 𝔼X∼Q[(Ah)(X)] = 0

• introduced by Stein (1972) for characterizing distributional convergence.

Stein Operators
Computable functionals that generate zero-mean functions

20

holds for in a flexible function classh

analytic expectations

Definition A Stein operator takes input function and outputs mean-zero functions
under distribution :

A h
Q

 𝔼X∼Q[(Ah)(X)] = 0

• introduced by Stein (1972) for characterizing distributional convergence.

• the operator he developed for normal distribution :Q

Stein Operators
Computable functionals that generate zero-mean functions

20

holds for in a flexible function classh

analytic expectations

Definition A Stein operator takes input function and outputs mean-zero functions
under distribution :

A h
Q

 𝔼X∼Q[(Ah)(X)] = 0

• introduced by Stein (1972) for characterizing distributional convergence.

• the operator he developed for normal distribution :Q

(Ah)(x) = h′ (x) − xh(x)

Stein Operators
Computable functionals that generate zero-mean functions

20

holds for in a flexible function classh

analytic expectations

Constructing Discrete Stein Operators
A general recipe

21

• Identify a Markov Chain with the stationary distribution(Xt)∞
t=0 Q

Constructing Discrete Stein Operators
A general recipe

21

• Identify a Markov Chain with the stationary distribution(Xt)∞
t=0 Q

• The transition matrix satisfiesKxy = P(Xt+1 = y |Xt = x)

Constructing Discrete Stein Operators
A general recipe

21

• Identify a Markov Chain with the stationary distribution(Xt)∞
t=0 Q

• The transition matrix satisfiesKxy = P(Xt+1 = y |Xt = x)

 for any . 𝔼Q[(K − I)h] = 0 h

Constructing Discrete Stein Operators
A general recipe

21

• Identify a Markov Chain with the stationary distribution(Xt)∞
t=0 Q

• The transition matrix satisfiesKxy = P(Xt+1 = y |Xt = x)

 for any . 𝔼Q[(K − I)h] = 0 h

Constructing Discrete Stein Operators
A general recipe

21

= A

• Identify a Markov Chain with the stationary distribution(Xt)∞
t=0 Q

• The transition matrix satisfiesKxy = P(Xt+1 = y |Xt = x)

 for any . 𝔼Q[(K − I)h] = 0 h

• Gibbs Stein operator:

Constructing Discrete Stein Operators
A general recipe

21

= A

• Identify a Markov Chain with the stationary distribution(Xt)∞
t=0 Q

• The transition matrix satisfiesKxy = P(Xt+1 = y |Xt = x)

 for any . 𝔼Q[(K − I)h] = 0 h

• Gibbs Stein operator:

(Ah)(x) =
1
d

d

∑
i=1

(∑
yi ≠ xi,

y−i = x−i

q(yi |x−i)h(y) + (q(xi |x−i) − 1)h(x))

Constructing Discrete Stein Operators
A general recipe

21

= A

• Identify a Markov Chain with the stationary distribution(Xt)∞
t=0 Q

• The transition matrix satisfiesKxy = P(Xt+1 = y |Xt = x)

 for any . 𝔼Q[(K − I)h] = 0 h

• Gibbs Stein operator:

(Ah)(x) =
1
d

d

∑
i=1

(∑
yi ≠ xi,

y−i = x−i

q(yi |x−i)h(y) + (q(xi |x−i) − 1)h(x))

Constructing Discrete Stein Operators
A general recipe

21

evaluation at neighboring states

= A

• Identify a Markov Chain with the stationary distribution(Xt)∞
t=0 Q

• The transition matrix satisfiesKxy = P(Xt+1 = y |Xt = x)

 for any . 𝔼Q[(K − I)h] = 0 h

• Gibbs Stein operator:

(Ah)(x) =
1
d

d

∑
i=1

(∑
yi ≠ xi,

y−i = x−i

q(yi |x−i)h(y) + (q(xi |x−i) − 1)h(x))

• see paper for generalization to continuous-time chains

Constructing Discrete Stein Operators
A general recipe

21

evaluation at neighboring states

= A

Gradient Estimation with Discrete Stein Operators

1
K

K

∑
k=1

[f(xk)∇ηlog qη(xk) + (Ah̃)(xk)]

22

Gradient Estimation with Discrete Stein Operators

1
K

K

∑
k=1

[f(xk)∇ηlog qη(xk) + (Ah̃)(xk)]

22

×

Gradient Estimation with Discrete Stein Operators

1
K

K

∑
k=1

[f(xk)∇ηlog qη(xk) + (Ah̃)(xk)]

22

×

𝒳 → ℝd

Gradient Estimation with Discrete Stein Operators

1
K

K

∑
k=1

[f(xk)∇ηlog qη(xk) + (Ah̃)(xk)]

22

× A
h̃1

h̃2
⋮
h̃d

𝒳 → ℝd

Gradient Estimation with Discrete Stein Operators

1
K

K

∑
k=1

[f(xk)∇ηlog qη(xk) + (Ah̃)(xk)]

22

× A
h̃1

h̃2
⋮
h̃d

How to choose :h̃

𝒳 → ℝd

Gradient Estimation with Discrete Stein Operators

1
K

K

∑
k=1

[f(xk)∇ηlog qη(xk) + (Ah̃)(xk)]

22

× A
h̃1

h̃2
⋮
h̃d

How to choose :h̃

Option 1: Solve Poisson equationsd𝒳 → ℝd

Gradient Estimation with Discrete Stein Operators

1
K

K

∑
k=1

[f(xk)∇ηlog qη(xk) + (Ah̃)(xk)]

22

× A
h̃1

h̃2
⋮
h̃d

How to choose :h̃

Option 1: Solve Poisson equationsd

Ah̃i = 𝔼Q[f ∇ηi
log qη] − f ∇ηi

log qη

𝒳 → ℝd

Gradient Estimation with Discrete Stein Operators

1
K

K

∑
k=1

[f(xk)∇ηlog qη(xk) + (Ah̃)(xk)]

22

× A
h̃1

h̃2
⋮
h̃d

How to choose :h̃

Option 1: Solve Poisson equationsd

Ah̃i = 𝔼Q[f ∇ηi
log qη] − f ∇ηi

log qη

Option 2: h̃ := h∇ηlog qη

𝒳 → ℝd

Gradient Estimation with Discrete Stein Operators

1
K

K

∑
k=1

[f(xk)∇ηlog qη(xk) + (Ah̃)(xk)]

22

× A
h̃1

h̃2
⋮
h̃d

How to choose :h̃

Option 1: Solve Poisson equationsd

Ah̃i = 𝔼Q[f ∇ηi
log qη] − f ∇ηi

log qη

Option 2: h̃ := h∇ηlog qη

𝒳 → ℝd

Theorem When , estimators with
this reduce to Rao-Blackwellization

 which guarantees
variance reduction

h = f
h̃

K(f ∇ηlog qη)

Gradient Estimation with Discrete Stein Operators

23

Gradient Estimation with Discrete Stein Operators

23

• By design is evaluated at all neighbors of h xk

Gradient Estimation with Discrete Stein Operators

23

• By design is evaluated at all neighbors of h xk

• make cheap while informed about h f

Gradient Estimation with Discrete Stein Operators

23

• By design is evaluated at all neighbors of h xk

• make cheap while informed about h f

hk(y) =
1

K − 1 ∑
j≠k

H(f(xj), ∇f(xj)⊤(y − xj))

Gradient Estimation with Discrete Stein Operators

23

Important: no extra evaluation of f

• By design is evaluated at all neighbors of h xk

• make cheap while informed about h f

hk(y) =
1

K − 1 ∑
j≠k

H(f(xj), ∇f(xj)⊤(y − xj))

Gradient Estimation with Discrete Stein Operators

23

Important: no extra evaluation of f

• By design is evaluated at all neighbors of h xk

• make cheap while informed about h f

hk(y) =
1

K − 1 ∑
j≠k

H(f(xj), ∇f(xj)⊤(y − xj))

• Replace both “local” and “global” control variates of double CV using discrete Stein
operators.

Benchmark: Training Binary Latent VAEs

• Latent-variable model:

• Maximizing a lower bound of the log marginal likelihood:

pθ(X, Z) = pθ(X |Z)p(Z)

log pθ(x) = log 𝔼qϕ(z|x) [pθ(x, z)
qϕ(z |x)] ≥ 𝔼qϕ(z|x) [log

pθ(x |z)p(z)
qϕ(z |x)]

24

Z

X

decoder
pθ(X |Z)

encoder
qϕ(Z |X)

Benchmark: Training Binary Latent VAEs

25

, K = 2 d = 200

Benchmark: Training Binary Latent VAEs

25

~20% reduction

, K = 2 d = 200

Benchmark: Training Binary Latent VAEs

25

~20% reduction

~40% reduction

, K = 2 d = 200

Benchmark: Training Binary Latent VAEs

26

RELAX needs three evaluations of , for other estimatorsf K = 3

[Grathwohl et al. 18]
[Dimitriev and Zhou, 21]

Bernoulli p(x |z) Gaussian p(x |z)

27

• Gradient Estimation for Discrete Expectations

• Titsias & Shi. (AISTATS’22)

• Shi, Zhou, Hwang, Titsias & Mackey. (In Submission)

• Gradient Estimation for Intractable Densities

• Shi, Sun & Zhu. (ICML’18)

• Zhou, Shi & Zhu. (ICML’20)

Today’s Talk
Gradient estimation for differentiable programming in probabilistic models

Motivation
A difficult example in representation learning

28

X ∼ PXY
data

Encoder NNϕ

representation [Hjelm et al., 19; Tschannen et al., 19]

https://scholar.google.com/citations?user=TSj_8nYAAAAJ&hl=en&oi=sra

• learn by maximizing mutual information:

Motivation
A difficult example in representation learning

28

X ∼ PXY
data

Encoder NNϕ

representation [Hjelm et al., 19; Tschannen et al., 19]

https://scholar.google.com/citations?user=TSj_8nYAAAAJ&hl=en&oi=sra

• learn by maximizing mutual information:

max
ϕ

I(X, Y) := KL(PX,Y∥PX ⊗ PY)

Motivation
A difficult example in representation learning

28

X ∼ PXY
data

Encoder NNϕ

representation [Hjelm et al., 19; Tschannen et al., 19]

https://scholar.google.com/citations?user=TSj_8nYAAAAJ&hl=en&oi=sra

• learn by maximizing mutual information:

max
ϕ

I(X, Y) := KL(PX,Y∥PX ⊗ PY)

Motivation
A difficult example in representation learning

28

X ∼ PXY
data

Encoder NNϕ

representation

𝔼PX,Y [log
pX,Y

pX pY]

[Hjelm et al., 19; Tschannen et al., 19]

https://scholar.google.com/citations?user=TSj_8nYAAAAJ&hl=en&oi=sra

• learn by maximizing mutual information:

max
ϕ

I(X, Y) := KL(PX,Y∥PX ⊗ PY)

• Often no explicit , and are intractablepX pY, pX,Y

Motivation
A difficult example in representation learning

28

X ∼ PXY
data

Encoder NNϕ

representation

𝔼PX,Y [log
pX,Y

pX pY]

[Hjelm et al., 19; Tschannen et al., 19]

https://scholar.google.com/citations?user=TSj_8nYAAAAJ&hl=en&oi=sra

• learn by maximizing mutual information:

max
ϕ

I(X, Y) := KL(PX,Y∥PX ⊗ PY)

• Often no explicit , and are intractablepX pY, pX,Y

• Prior estimators assume is computable inL ∇ϕ𝔼[L(f(X))]

Motivation
A difficult example in representation learning

28

X ∼ PXY
data

Encoder NNϕ

representation

𝔼PX,Y [log
pX,Y

pX pY]

[Hjelm et al., 19; Tschannen et al., 19]

https://scholar.google.com/citations?user=TSj_8nYAAAAJ&hl=en&oi=sra

29

Gradient estimation for KL-divergence
Motivation

29

Gradient estimation for KL-divergence

∇ϕKL(qϕ∥p)

Motivation

29

• are intractable

• easy access to the sample of through ,

qϕ(x), p(x)

qϕ ϵ ∼ ν x = gϕ(ϵ)

Gradient estimation for KL-divergence

∇ϕKL(qϕ∥p)

Motivation

= 𝔼ϵ∼ν[∇log q(x)∇ϕgϕ(ϵ)] − 𝔼ϵ∼ν[∇log p(x)∇ϕgϕ(ϵ)]

29

• are intractable

• easy access to the sample of through ,

qϕ(x), p(x)

qϕ ϵ ∼ ν x = gϕ(ϵ)

Gradient estimation for KL-divergence

∇ϕKL(qϕ∥p)

Motivation

= 𝔼ϵ∼ν[∇log q(x)∇ϕgϕ(ϵ)] − 𝔼ϵ∼ν[∇log p(x)∇ϕgϕ(ϵ)]

29

• are intractable

• easy access to the sample of through ,

qϕ(x), p(x)

qϕ ϵ ∼ ν x = gϕ(ϵ)

Gradient estimation for KL-divergence

∇ϕKL(qϕ∥p)

Score function

Motivation

= 𝔼ϵ∼ν[∇log q(x)∇ϕgϕ(ϵ)] − 𝔼ϵ∼ν[∇log p(x)∇ϕgϕ(ϵ)]

29

• are intractable

• easy access to the sample of through ,

qϕ(x), p(x)

qϕ ϵ ∼ ν x = gϕ(ϵ)

Gradient estimation for KL-divergence

∇ϕKL(qϕ∥p)

Score function

∇log q(x){xj}M
j=1

i.i.d.∼ q

Motivation

Score Estimation

30

q(x) ∇log q(x)

31

A Spectral Estimator

• Under mild conditions

• Nyström methods for estimating and its
derivatives

• Truncating the series at small eigenvalues

∇xi
log q(x) = − ∑

j≥1

𝔼q [∇xi
ψj(x)] ψj(x)

ψj

Main result

𝔼x′ ∼q[k(x, x′)ψj(x′)] = λjψj(x)

Shi et al. A spectral approach to gradient estimation for implicit distributions. ICML 2018

A Spectral Estimator
Properties

32

Alain & Bengio, 14 Sriperumbudur et al., 13 Li & Turner, 17 This work

Closed-form N Y Y Y

Complexity scales
linearly w/ Y N Y Y

Principled out-of-
sample prediction Y Y N Y

Convergence rates - [1/4, 1/3] - [1/4, 1/2)

need training cubic scaling only in-sample
prediction

d

Applications
Functional Bayesian Neural Networks

33

p(w |X, y) ∝
n

∏
i=1

p(yi | f(xi; w))p(w)

Bayesian Neural Networks

…

Sun*, Zhang*, Shi*, Grosse. Functional variational Bayesian neural networks. ICLR 2019

Applications
Functional Bayesian Neural Networks

33

p(w |X, y) ∝
n

∏
i=1

p(yi | f(xi; w))p(w)

Bayesian Neural Networks

…

Sun*, Zhang*, Shi*, Grosse. Functional variational Bayesian neural networks. ICLR 2019

Applications
Functional Bayesian Neural Networks

33

p(w |X, y) ∝
n

∏
i=1

p(yi | f(xi; w))p(w)

Bayesian Neural Networks

…

Sun*, Zhang*, Shi*, Grosse. Functional variational Bayesian neural networks. ICLR 2019

• Problems of weight-space inference:

Applications
Functional Bayesian Neural Networks

33

p(w |X, y) ∝
n

∏
i=1

p(yi | f(xi; w))p(w)

Bayesian Neural Networks

…

Sun*, Zhang*, Shi*, Grosse. Functional variational Bayesian neural networks. ICLR 2019

• Problems of weight-space inference:

• Weights have no meaning, non-identifiable

Applications
Functional Bayesian Neural Networks

33

p(w |X, y) ∝
n

∏
i=1

p(yi | f(xi; w))p(w)

Bayesian Neural Networks

…

Sun*, Zhang*, Shi*, Grosse. Functional variational Bayesian neural networks. ICLR 2019

• Problems of weight-space inference:

• Weights have no meaning, non-identifiable

• hard to specify meaningful priors

Applications
Functional Bayesian Neural Networks

33

p(w |X, y) ∝
n

∏
i=1

p(yi | f(xi; w))p(w)

Bayesian Neural Networks

…

Sun*, Zhang*, Shi*, Grosse. Functional variational Bayesian neural networks. ICLR 2019

• Problems of weight-space inference:

• Weights have no meaning, non-identifiable

• hard to specify meaningful priors

• Function space inference:

Applications
Functional Bayesian Neural Networks

33

p(w |X, y) ∝
n

∏
i=1

p(yi | f(xi; w))p(w)

Bayesian Neural Networks

…

Sun*, Zhang*, Shi*, Grosse. Functional variational Bayesian neural networks. ICLR 2019

• Problems of weight-space inference:

• Weights have no meaning, non-identifiable

• hard to specify meaningful priors

• Function space inference:

𝔼qϕ(f)[log p(y | f)] − KL(qϕ(f)∥p(f))

Applications
Functional Bayesian Neural Networks

33

p(w |X, y) ∝
n

∏
i=1

p(yi | f(xi; w))p(w)

Bayesian Neural Networks

…

Sun*, Zhang*, Shi*, Grosse. Functional variational Bayesian neural networks. ICLR 2019

• Problems of weight-space inference:

• Weights have no meaning, non-identifiable

• hard to specify meaningful priors

• Function space inference:

𝔼qϕ(f)[log p(y | f)] − KL(qϕ(f)∥p(f))

: induced by through qϕ(f) qϕ(w) f = f(X; w)

Applications
Functional Bayesian Neural Networks

33

p(w |X, y) ∝
n

∏
i=1

p(yi | f(xi; w))p(w)

Bayesian Neural Networks

…

Sun*, Zhang*, Shi*, Grosse. Functional variational Bayesian neural networks. ICLR 2019

• Problems of weight-space inference:

• Weights have no meaning, non-identifiable

• hard to specify meaningful priors

• Function space inference:

𝔼qϕ(f)[log p(y | f)] − KL(qϕ(f)∥p(f))

: induced by through qϕ(f) qϕ(w) f = f(X; w)

Applications
Functional Bayesian Neural Networks

33

intractablep(w |X, y) ∝
n

∏
i=1

p(yi | f(xi; w))p(w)

Bayesian Neural Networks

…

Sun*, Zhang*, Shi*, Grosse. Functional variational Bayesian neural networks. ICLR 2019

Applications
Functional Bayesian Neural Networks

34

Locally smooth Periodic Piecewise constant

Exploration using
posterior uncertainty in

contextual bandits

[Sun*, Zhang*, Shi* & Grosse, ICLR’19]

Applications

35

Gradient-free Hamiltonian Monte CarloLearning Wasserstein Autoencoders

[Shi et al., ICML’18][Zhou, Shi & Zhu, ICML’20]

Applications
Mutual Information Gradient Estimation

36

Performance of Learned Representations

[Wen et al., ICLR’20]

Concluding Remarks

• Gradient Estimation for Discrete Expectations

• Double control variates—a new framework for variance reduction in REINFORCE-type estimators

• Discrete Stein operators—a general recipe for constructing flexible control variates for discrete
distributions

• Gradient Estimation for Intractable Densities

• Score estimation—a spectral approach and applications

Gradient estimation for differentiable programming in probabilistic models

37

Future Directions

• Score-based probabilistic modeling

• Parametric score estimators, e.g., sliced score matching

• Fit such estimators to data: score-based generative models

38

[Song, Garg, Shi, Ermon, UAI’20]

xScore Network∇log q(x)

Future Directions

• Gradient estimation for discrete expectations in structured models

• chains, temporal dependencies, state-space models

• exploit graphical structure to achieve further variance reduction

39

Future Directions

• Structured data distribution, symmetry and invariance

• differentiable programming is good at exploiting invariance/equivariance

• exploiting such properties in probabilistic inference?

40

[Sun, Shi, et al., ICML’21]

References

• Titsias & Shi. Double Control Variates for Gradient Estimation in Discrete Latent-
Variable Models. AISTATS 2022

• Shi, et al. Gradient Estimation with Discrete Stein Operators. In Submission

• Shi et al. A spectral approach to gradient estimation for implicit distributions. ICML
2018

• Sun*, Zhang*, Shi*, Grosse. Functional variational Bayesian neural networks. ICLR
2019

• Zhou, Shi, Zhu. Nonparametric score estimators. ICML 2020

41

References

• Grathwohl, et al. Backpropagation through the void: Optimizing control variates for
black-box gradient estimation. ICLR 2018.

• Dimitriev & Zhou. ARMS: Antithetic-REINFORCE-Multi-Sample gradient for binary
variables. ICML 2021.

• Wen, et al. Mutual information gradient estimation for representation learning. ICLR
2020.

• Luo, Tian, Shi, et al. Semi-crowdsourced clustering with deep generative
models. NeurIPS 2018

• Zhuo, Liu, Shi, et al. Message passing Stein variational gradient descent. ICML 2018

• Shi et al. Sparse orthogonal variational inference for Gaussian processes. AISTATS
2020

42

