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* a new paradigm that has become popular in machine learning, especially in deep
learning

* (over-)parameterized models trained in an end-to-end fashion to minimize a loss
function

 Models are differentiable. Training is through gradient-based optimization.
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Why Differentiable Programming in Probabilistic Models?

» (Classical probabilistic models in our toolbox (e.g., linear regression, conjugate
graphical models) can be significantly misspecified.

(the commitment to such models) “has led to irrelevant theory, questionable conclusions, and has kept
statisticians from working on a large range of interesting current problems”

(algorithmic model like neural networks) “can produce more reliable information about the structure of the
relationship between inputs and outputs than data models”

* Use differentiable programming ideas to improve the situation?
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Lack of a unifying framework —algorithms are tailored to certain model class and
configurations. Real: One model for all tasks
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Stochastic Gradient Estimation is Difficult

loss function

V¢,9 _XNP¢[L(f9(X))]

a differentiable program

It appears everywhere:
* fitting models to data by minimizing expected loss
e optimizing variational objectives

 computing policy gradients for model-based reinforcement learning
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Vs oExep, ILUHO)] =V gEp [L(Y)]

° Intractable expectation (sum/integration)

* Intractable density functions: L could depend on py(y).
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Why are Discrete Expectations Challenging?

The easy part: V _X~P¢[ fo(X)] =L X~P¢[ V[o(X)]

\/¢ -XNP¢[f(X)] —three options:
X « Exact expectation + autodiff

X « Pathwise gradients: reparameterize X ~ P¢I

 REINFORCE:
V¢ _XNP¢[f(X)] — _X~P¢[f(X) V¢logp¢(X)]

very high variance
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Then Var(RLOQO) > Var(R*)

There is room for improving the state-of-the-art REINFORCE estimators

 potential direction: variance reduction for the leave-one-out baseline?
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Gradient Estimation for Discrete Expectations
Roadmap

Double Control Variates

A new framework for variance
reduction in REINFORCE-type
estimators

Discrete Stein Operators

A general recipe for building
flexible control variates for
discrete distributions

Titsias & Shi. Double Control Variates for Gradient Estimation in Discrete Latent-Variable Models. AISTATS 2022
Shi, et al. Gradient Estimation with Discrete Stein Operators. In Submission.
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| K correction term
= 2 (o) + ab(x) ) V glog p,(x) — aExp [BX) Y log py(X)]
k=1

Idea: Treat f(x) + ab(x) as the effective objective function and apply leave-one-out:

1 < 1

% Z ((f (x)+ab(x,)) — P Z ( f(xj)+ab(xj))) V slog p,(x;) — corr

=l j#k
“global” “local”

a IS a regression coefficient adapted online by minimizing variance.
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Double Control Variates
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I I
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* The correction term has an analytical form.
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JFk
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gradients V g f5(x).
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Double Control Variates

K

I I
1% Z ((f (x) + ab,(x;)) — P Z (f(x;) + abj(xj))) V slog p,(x,) — corr

k=1 i#k

Desired properties of the sample-dependent baseline:

RLOO Double CV

* The correction term has an analytical form.
Time (sec/step) 0.0035 0.0036

* requires no extra evaluation of f

1 T
bi(x) = (H 2 Vf(xj)) (x—p), pu=EkplX]
JFk
{V f()ck)}f=1 can be obtained “for free” from the same backpropagation to compute the €
gradients V g f5(x).
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Quadratic Loss Example
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The Quest for More Flexible Control Variates

* (Control variates are effective only when they are strongly correlated with the original
statistic

 Zero variance is achieved with ab(x) = f(x)

* |deally, would like a very flexible control variate that can be adapted online to
minimize the variance

» Still, they need to have analytic expectations
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Stein Operators
Computable functionals that generate zero-mean functions

Definition A Stein operator A takes input function 4 and outputs mean-zero functions

under distribution Q: | | |
holds for /1 in a flexible function class

= ol(A(X)] =0 analytic expectations

* introduced by Stein (1972) for characterizing distributional convergence.

 the operator he developed for normal distribution QO:

(Ah)(x) = h'(x) — xh(x)
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Constructing Discrete Stein Operators
A general recipe

- Identify a Markov Chain (X))~ with Q the stationary distribution

» The transition matrix K, = P(X,,| = y|X, = x) satisfies

—ol(K=1Dh] =0 forany h.
N

AN

4

evaluation at neighboring states

1 d
AnE == (2, a0i1xh) + (q0g1x_) = Dh())

i=1 Y F X
Y_i = X

 Gibbs Stein operator:
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Constructing Discrete Stein Operators
A general recipe

» Identify a Markov Chain (X,) .~ with Q the stationary distribution

» The transition matrix K, = P(X,,| = y|X, = x) satisfies

—ol(K=1Dh] =0 forany h.
N

AN

 Gibbs Stein operator: <

evaluation at neighboring states

1 d
(An) = — Z:, ( y; q(v; | x_Dh() + (g(x; ] x_;) — Dh(x))

Y_i = A

e see paper for generalization to continuous-time chains
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Gradient Estimation with Discrete Stein Operators

1 K ~
= ,; [f(x) V,log q,(x) + (Ah)(x)]
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\

1 K ~
% ]; [f(x) V, log g, (x) + (Ah)(x,)]

H X

AP

EETT =
ol
L
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E Z | f(xk) Vnk)g qn(xk) + (Ah)(xk)]
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Gradient Estimation with Discrete Stein Operators

How to choose 71:

7 _ R4 Option 1: Solve d Poisson equations
1 K \~ Ah; = ~olf Vylogg,l =V, logg,
= Z [f(x) V, log q,(x) + (Ah)(x)]
k=1 . 3 Option 2: h := hanOg 4
m x B A|m

= 3
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Gradient Estimation with Discrete Stein Operators

How to choose iz:

9 5 R Option 1: Solve d Poisson equations
1 K \,., Al:ll — _Q[fvnilog q}f]] _fvnilog qif]
— 2, L0V, loga, () + (AR)(x)]
=l u hy Option 2: h := hV,hloggq,
m x B A [
2 ; . Theorem When /1 = f, estimators with

this /1 reduce to Rao-Blackwellization
K(f V,logg,) which guarantees
variance reduction
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Gradient Estimation with Discrete Stein Operators

» By design /4 is evaluated at all neighbors of x;

» make /i cheap while informed about f

1 ~_ T  __ Important: no extra evaluation of f
() = —— D H(f(x), V) (y = x)))

j#k

* Replace both “local” and “global” control variates of double CV using discrete Stein
operators.
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Benchmark: Training Binary Latent VAEs

©

decoder % encoder
q,(Z1X)

» Latent-variable model: py(X, Z) = py(X | Z)p(Z)

 Maximizing a lower bound of the log marginal likelihood: pH(X‘Z)

Po(X, 2) Pe(x | 2)p(2)
Inge(.X) = lOg _q¢(z|x) [qj(z\x)] > _qu(ZlX) |:10g eq¢(z‘x) :| @
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Today’s Talk

Gradient estimation for differentiable programming in probabilistic models

 Gradient Estimation for Discrete Expectations
« Titsias & Shi. (AISTATS'22)
* Shi, Zhou, Hwang, Titsias & Mackey. (In Submission)

e (Gradient Estimation for Intractable Densities
» Shi, Sun & Zhu. (ICML'18)
e Zhou, Shi & Zhu. (ICML20)
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Motivation
A difficult example in representation learning

representati()n data [Hjelm et al., 19; Tschannen et al., 19]
Y < EncoderNN, r— X ~ Py
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- log
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Motivation
A difficult example in representation learning

representati()n data [Hjelm et al., 19; Tschannen et al., 19]
Y «— EncoderNN, — X ~ Py

* |earn by maximizing mutual information:

Pxy ]

- log
P
- [ PxPy

max I(X, Y) := KL(Py ,||Py ® Py)
y ,

» Often no explicit py, and py, px y are intractable

 Prior estimators assume L is computable in V »E |L(f(X))]
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Score function

(WP PR g ——  Viogg(x)
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Score Estimation
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A Spectral Estimator
Main result

Space of square-integrable  Under mild conditions
functionsw.r.t. g
A Ye(x) inlog q(X) = — Z " lell//](x)] WJ(X)
g,-(x) — vx,’ |Og q(X) ]Zl

« Nystrom methods for estimating W; and its
. derivatives

_—
==z
]
ey
_—
==
—
=

* Truncating the series at small eigenvalues

= oK Xr(X)] = Ar(x)

Shi et al. A spectral approach to gradient estimation for implicit distributions. ICML 2018
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A Spectral Estimator
Properties

Alain & Bengio, 14

Closed-form N

Complexity scales

linearly w/ d Y

Principled out-of-

sample prediction Y

Convergence rates -

need training

Sriperumbudur et al., 13 Li & Turner, 17

Y Y
N Y
Y N
[1/4, 1/3] -

only in-sample

cubic scaling srediction

This work

Y

Y

Y

[1/4, 1/2)
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Applications

Functional Bayesian Neural Networks

Bayesian Neural Networks

I
A

O O

pw|X,y) [ | pGilfixi: w)p(w)
=1

Sun*, Zhang*, Shi*, Grosse. Functional variational Bayesian neural networks. ICLR 2019
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Applications

Functional Bayesian Neural Networks

Bayesian Neural Networks | Can’t Believe
Bayesian Deep Learning

Q Microsoft Research Cambridge

March 2022

k /< ICBINB seminar series
|

O O

pw|X,y) o« | | pOilfxi: whp(w)
=1

Sun*, Zhang*, Shi*, Grosse. Functional variational Bayesian neural networks. ICLR 2019

0/;3\@ IS not Better
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Applications

Functional Bayesian Neural Networks

Bayesian Neural Networks | Can’t Believe
Bayesian Deep Learning

Microsoft Research Cambridge

RT % Published as a conference paper at ICLR 2018
|

Q Q DEEP BAYESIAN BANDITS SHOWDOWN
AN EMPIRICAL COMPARISON OF BAYESIAN DEEP NETWORKS FOR THOMPSON SAMPLING

0/;3\@ IS not Better
oo e ebastian Nowozin

Carlos Riquelme* George Tucker Jasper Snoek
Google Brain Google Brain Google Brain

n
p(W ‘ X, y) X Hp(yl ‘f(XZ; W))p(W) rikel@google.com gjt@google.com jsnoekl@google.com
=1

Sun*, Zhang*, Shi*, Grosse. Functional variational Bayesian neural networks. ICLR 2019
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Sayesian Neural Networks * Problems of weight-space inference:
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Functional Bayesian Neural Networks

Piecewise constant

Locally smooth Periodic
3 3 1.0'.
24 0.8
1 0.6 J
01 0.4
_> / "&'/’ J \, 0.0-
—3- -3 _02 4
—4 -2 0 2 —4 -2 0 2 4
M. RANK M. VALUE MUSHRoOOM STATLOG COVERTYPE  FINANCIAL JESTER ADULT
FBNN 1 x 50 4.7 41.9 21.38 = 7.00 8.85 +4.55 47.16 £2.39 9.90 £+ 2.40 75.55 +5.51 88.43 +1.95
FBNN 2 x 50 6.5 43.0 24.57 £ 10.81 10.08 +5.66 49.04 +3.75 11.83 +£2.95 73.85 + 6.82 88.81 + 3.29
FBNN 3 x 50 7 45.0 34.03 +£13.95 7.73 +=4.37 50.14 =3.13 14.14 == 1.99 74.27 +=6.54 89.68 + 1.66
FBNN 1 x 500 3.8 41.3 21.90 +=9.95 6.50 + 2.97 47.45 +1.86 7.83 +0.77 74.81 =5.57 89.03 +1.78
FBNN 2 x 500 4.2 41.2 23.93 +11.59 7.98 & 3.08 46.00 =2.01 10.67 £+ 3.52 68.88 = 7.09 89.70 £ 2.01
FBNN 3 x 500 4.2 40.9 19.07 +=4.97 10.04 + 5.09 45.24 +2.11 11.48 +2.20 69.42 +7.56 90.01 =1.70
MULTITASKGP 4.3 41.7 20.75 +2.08 7.25 +1.80 48.37 +=3.50 8.07 =1.13 76.99 +- 6.01 88.64 + 3.20
BBB 1 x 50 10.8 52.7 24.41 £ 6.70 25.67 + 3.46 58.25 +5.00 37.69+15.34 75.39+£6.32 95.07 £1.57
BBB 1 x 500 13.7 66.2 26.41 + 8.71 51.29 +11.27 8391 +4.62 57.20+7.19 78.94 +-4.98 99.21 £ 0.79
BBALPHADIV 15 83.8 61.00 + 6.47 70.91 +£10.22 97.63 +3.21 85.94 + 4.88 87.80 =5.08 99.60 &= 1.06
PARAMNOISE 10 47.9 20.33 +13.12 13.27 £ 2.85 65.07 =3.47 17.63 =4.27 74.94 +7.24 95.90 £+ 2.20
NEURALLINEAR 10.8 48.8 16.56 = 11.60 13.96 +1.51 64.96 +-2.54 18.57 £2.02 82.14 £ 3.64 96.87 == 0.92
LINFULLPOST 8.3 46.0 14.71 4+ 0.67 19.24 +0.77 58.69 +1.17 10.69 = 0.92 77.76 £5.67 95.00+1.26
DROPOUT 5.5 41.7 12.53 +1.82 12.01 = 6.11 48.95 +2.19 14.64 + 3.95 71.38+=7.11 90.62 +=2.21
RMS 6.5 43.9 15.29 + 3.06 11.38 + 5.63 58.96 =4.97 10.46 ==1.61 72.09 £ 6.98 95.29 +£1.50
BOOTRMS 4.7 42.6 18.05+11.20 6.13 +1.03 53.63 +2.15 8.69 +1.30 74.71 = 6.00 94.18 +1.94
UNIFORM 16 100 100.0 = 0.0 100.0 == 0.0 100.0 = 0.0 100.0 = 0.0 100.0 = 0.0 100.0 = 0.0

Exploration using
posterior uncertainty in
contextual bandits

[Sun*, Zhang*, Shi* & Grosse, ICLR’19]
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Applications

Learning Wasserstein Autoencoders

[Zhou, Shi & Zhu, ICML20]

Gradient-free Hamiltonian Monte Carlo

0.65

0.60

0.50

0.45

" g

Spectral

KMC Stein™

[Shi et al., ICML’18]
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Applications

Mutual Information Gradient Estimation

Performance of Learned Representations

Model CIFAR-10 CIFAR-100
conv fc(1024) Y(64) conv fc(1024) Y(64)
DIM (JSD) 55.81% 45.73% 40.67% | 28.41% 22.16% 16.50%
DIM (JSD + PM) 52.2% 52.84% 43.17% | 24.40% 18.22% 15.22%
DIM (infoNCE) 51.82% 42.81% 37.79% | 24.60% 16.54% 12.96%
DIM (infoNCE + PM) || 56.77% 49.42% 42.68% | 25.51% 20.15% 15.35%
MIGE 5795% 57.09% 53.75% | 29.86% 27.91% 25.84%

[Wen et al., ICLR’20]
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Concluding Remarks
Gradient estimation for differentiable programming in probabilistic models

 Gradient Estimation for Discrete Expectations

* Double control variates—a new framework for variance reduction in REINFORCE-type estimators

» Discrete Stein operators—a general recipe for constructing flexible control variates for discrete
distributions

e (Gradient Estimation for Intractable Densities

* Score estimation—a spectral approach and applications

37




Future Directions

Vl()g q(X) < Score Network — X

* Score-based probabilistic modeling
 Parametric score estimators, e.g., sliced score matching [Song, Garg, Shi, Ermon, UAI’20]

* Fit such estimators to data: score-based generative models
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Future Directions

NP
>

 Gradient estimation for discrete expectations in structured models

O-0O-0-0

* chains, temporal dependencies, state-space models

* exploit graphical structure to achieve further variance reduction
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Future Directions

N1 ) S s =y (
e PIECE)
1%/9\\% | @g ﬁ\@ ;\_1]0/1\2 [Sun, Shi, et al., ICML21]

—2 -1 0 1 2 -2 -1 0 2 -2 -1 0 1 2 -

o Structured data distribution, symmetry and invariance
» differentiable programming is good at exploiting invariance/equivariance

» exploiting such properties in probabilistic inference?
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