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Differentiable Programming

• a new paradigm that has become popular in machine learning, especially in deep 
learning

• (over-)parameterized models trained in an end-to-end fashion to minimize a loss 
function

• Models are differentiable. Training is through gradient-based optimization.
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Why Differentiable Programming?

3

• Expressiveness

rich enough to express complex 
mechanisms

• Compositionality

Models are easily composable to allow 
end-to-end training 

• Scalability

scales to high-dimensional inputs and 
huge datasets on modern hardware

Mnih et al. 13; Jumper et al. 21; Dosovitskiy et al. 20 



Probabilistic Modeling

4

Luo, Tian, Shi, Zhu & Zhang (NeurIPS’18)
Zhuo, Liu, Shi, Chen, Zhu & Zhang (ICML’18)

Shi, Titsias & Mnih (AISTATS’20)
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Why Differentiable Programming in Probabilistic Models?

• Classical probabilistic models in our toolbox (e.g., linear regression, conjugate 
graphical models) can be significantly misspecified.

(the commitment to such models) “has led to irrelevant theory, questionable conclusions, and has kept 
statisticians from working on a large range of interesting current problems”

(algorithmic model like neural networks) “can produce more reliable information about the structure of the 
relationship between inputs and outputs than data models”

• Use differentiable programming ideas to improve the situation?
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z ∼ p(z)

x ∼ p(x | fθ(z))

VAE
z ∼ p(z)

x = fθ(z)

GAN

x′ ∼ pdata(x)

Gen

Disc Disc

Normalizing Flow

Encoder 
NN

z ∼ p(z)

Invertible 
NN

pX(x) = p( f −1
θ (x)) | det ∇f −1

θ (x) |

z ∼ q(z |x)

Real: One model for all tasks Ideal: One algorithm for all models
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loss function

a differentiable program

Why is Differentiable Programming in Probabilistic 
Models Challenging?
Stochastic Gradient Estimation is Difficult

∇ϕ,θ𝔼X∼Pϕ
[L( fθ(X))]

It appears everywhere:

• fitting models to data by minimizing expected loss

• optimizing variational objectives

• computing policy gradients for model-based reinforcement learning

• …
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Two Levels of Intractability

• Intractable expectation (sum/integration)
• Intractable density functions:  could depend on .L pY(y)
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fθ X ∼ PϕY

∇ϕ,θ𝔼X∼Pϕ
[L( fθ(X))] = ∇ϕ,θ𝔼PY

[L(Y)]
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very high variance 

The easy part: 
∇θ𝔼X∼Pϕ
[ fθ(X)] = 𝔼X∼Pϕ

[∇θ fθ(X)]
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• “baseline” tracks the expected value of f(x)

• reduce variance by centering learning signal

• REINFORCE Leave-One-Out:

The REINFORCE Estimator
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There is room for improving the state-of-the-art REINFORCE estimators

• potential direction: variance reduction for the leave-one-out baseline?

Proposition Define the two gradient estimators:
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Gradient Estimation for Discrete Expectations
Roadmap
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Double Control Variates 

A new framework for variance 
reduction in REINFORCE-type 
estimators

Discrete Stein Operators 

A general recipe for building 
flexible control variates for 
discrete distributions

Titsias & Shi. Double Control Variates for Gradient Estimation in Discrete Latent-Variable Models. AISTATS 2022
Shi, et al. Gradient Estimation with Discrete Stein Operators. In Submission. 
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bk(x) = ( 1
K − 1 ∑

j≠k

∇f(xj))
⊤
(x − μ), μ = 𝔼Pϕ

[X]

 can be obtained “for free” from the same backpropagation to compute the  
gradients . 
{∇f(xk)}K

k=1 θ
∇θ fθ(x)



Quadratic Loss Example
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, where max
η

𝔼X∼Pη [ 1
d

d

∑
i=1

(Xi − 0.499)2] pη(x) =
d

∏
i=1

σ(ηi)xi(1 − σ(ηi))1−xi
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The Quest for More Flexible Control Variates

19

• Control variates are effective only when they are strongly correlated with the original 
statistic

• Zero variance is achieved with αb(x) = f(x)

• Ideally, would like a very flexible control variate that can be adapted online to 
minimize the variance

• Still, they need to have analytic expectations
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Definition A Stein operator  takes input function  and outputs mean-zero functions 
under distribution : 

A h
Q

 𝔼X∼Q[(Ah)(X)] = 0

• introduced by Stein (1972) for characterizing distributional convergence. 

• the operator he developed for normal distribution :Q

(Ah)(x) = h′ (x) − xh(x)

Stein Operators
Computable functionals that generate zero-mean functions

20

holds for  in a flexible function classh

analytic expectations



Constructing Discrete Stein Operators
A general recipe

21



• Identify a Markov Chain  with  the stationary distribution(Xt)∞
t=0 Q

Constructing Discrete Stein Operators
A general recipe

21



• Identify a Markov Chain  with  the stationary distribution(Xt)∞
t=0 Q

• The transition matrix  satisfiesKxy = P(Xt+1 = y |Xt = x)

Constructing Discrete Stein Operators
A general recipe

21



• Identify a Markov Chain  with  the stationary distribution(Xt)∞
t=0 Q

• The transition matrix  satisfiesKxy = P(Xt+1 = y |Xt = x)

     for any . 𝔼Q[(K − I)h] = 0 h

Constructing Discrete Stein Operators
A general recipe

21



• Identify a Markov Chain  with  the stationary distribution(Xt)∞
t=0 Q

• The transition matrix  satisfiesKxy = P(Xt+1 = y |Xt = x)

     for any . 𝔼Q[(K − I)h] = 0 h

Constructing Discrete Stein Operators
A general recipe

21

= A



• Identify a Markov Chain  with  the stationary distribution(Xt)∞
t=0 Q

• The transition matrix  satisfiesKxy = P(Xt+1 = y |Xt = x)

     for any . 𝔼Q[(K − I)h] = 0 h

• Gibbs Stein operator:

Constructing Discrete Stein Operators
A general recipe

21

= A



• Identify a Markov Chain  with  the stationary distribution(Xt)∞
t=0 Q

• The transition matrix  satisfiesKxy = P(Xt+1 = y |Xt = x)

     for any . 𝔼Q[(K − I)h] = 0 h

• Gibbs Stein operator:

(Ah)(x) =
1
d

d

∑
i=1

( ∑
yi ≠ xi,

y−i = x−i

q(yi |x−i)h(y) + (q(xi |x−i) − 1)h(x))
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• Identify a Markov Chain  with  the stationary distribution(Xt)∞
t=0 Q

• The transition matrix  satisfiesKxy = P(Xt+1 = y |Xt = x)

     for any . 𝔼Q[(K − I)h] = 0 h

• Gibbs Stein operator:

(Ah)(x) =
1
d

d

∑
i=1

( ∑
yi ≠ xi,

y−i = x−i

q(yi |x−i)h(y) + (q(xi |x−i) − 1)h(x))

• see paper for generalization to continuous-time chains

Constructing Discrete Stein Operators
A general recipe

21

evaluation at neighboring states 

= A
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Option 1: Solve  Poisson equationsd
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K

∑
k=1

[ f(xk)∇ηlog qη(xk) + (Ah̃)(xk)]
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× A
h̃1

h̃2
⋮
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How to choose :h̃

Option 1: Solve  Poisson equationsd

Ah̃i = 𝔼Q[ f ∇ηi
log qη] − f ∇ηi

log qη

Option 2: h̃ := h∇ηlog qη
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Gradient Estimation with Discrete Stein Operators

1
K

K

∑
k=1

[ f(xk)∇ηlog qη(xk) + (Ah̃)(xk)]

22

× A
h̃1

h̃2
⋮
h̃d

How to choose :h̃

Option 1: Solve  Poisson equationsd

Ah̃i = 𝔼Q[ f ∇ηi
log qη] − f ∇ηi

log qη

Option 2: h̃ := h∇ηlog qη

𝒳 → ℝd

Theorem When , estimators with 
this  reduce to Rao-Blackwellization 

 which guarantees 
variance reduction

h = f
h̃

K( f ∇ηlog qη)
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Gradient Estimation with Discrete Stein Operators

23

Important: no extra evaluation of    f

• By design  is evaluated at all neighbors of h xk

• make  cheap while informed about h f

hk(y) =
1

K − 1 ∑
j≠k

H( f(xj), ∇f(xj)⊤(y − xj))

• Replace both “local” and “global” control variates of double CV using discrete Stein 
operators.



Benchmark: Training Binary Latent VAEs

• Latent-variable model: 


• Maximizing a lower bound of the log marginal likelihood:


pθ(X, Z) = pθ(X |Z)p(Z)

log pθ(x) = log 𝔼qϕ(z|x) [ pθ(x, z)
qϕ(z |x) ] ≥ 𝔼qϕ(z|x) [log

pθ(x |z)p(z)
qϕ(z |x) ]

24

Z

X

decoder
pθ(X |Z)

encoder
qϕ(Z |X)
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~20% reduction

~40% reduction

, K = 2 d = 200



Benchmark: Training Binary Latent VAEs

26

RELAX needs three evaluations of ,  for other estimatorsf K = 3

[Grathwohl et al. 18]
[Dimitriev and Zhou, 21]

Bernoulli p(x |z) Gaussian p(x |z)
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• Gradient Estimation for Discrete Expectations

• Titsias & Shi. (AISTATS’22)

• Shi, Zhou, Hwang, Titsias & Mackey. (In Submission)

• Gradient Estimation for Intractable Densities

• Shi, Sun & Zhu. (ICML’18)

• Zhou, Shi & Zhu. (ICML’20)

Today’s Talk
Gradient estimation for differentiable programming in probabilistic models
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• learn by maximizing mutual information:

max
ϕ

I(X, Y) := KL(PX,Y∥PX ⊗ PY)

• Often no explicit , and  are intractablepX pY, pX,Y

• Prior estimators assume  is computable inL ∇ϕ𝔼[L( f(X))]

Motivation
A difficult example in representation learning

28

X ∼ PXY
data

Encoder NNϕ

representation

𝔼PX,Y [log
pX,Y

pX pY ]

[Hjelm et al., 19; Tschannen et al., 19]
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•  are intractable

• easy access to the sample of  through , 

qϕ(x), p(x)

qϕ ϵ ∼ ν x = gϕ(ϵ)

Gradient estimation for KL-divergence

∇ϕKL(qϕ∥p)

Score function

∇log q(x){xj}M
j=1

i.i.d.∼ q

Motivation



Score Estimation

30

q(x) ∇log q(x)
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A Spectral Estimator

• Under mild conditions





• Nyström methods for estimating  and its 
derivatives


• Truncating the series at small eigenvalues

∇xi
log q(x) = − ∑

j≥1

𝔼q [∇xi
ψj(x)] ψj(x)

ψj

Main result

𝔼x′ ∼q[k(x, x′ )ψj(x′ )] = λjψj(x)

Shi et al. A spectral approach to gradient estimation for implicit distributions. ICML 2018



A Spectral Estimator
Properties

32

Alain & Bengio, 14 Sriperumbudur et al., 13 Li & Turner, 17 This work

Closed-form N Y Y Y

Complexity scales 
linearly w/ Y N Y Y

Principled out-of-
sample prediction Y Y N Y

Convergence rates - [1/4, 1/3] - [1/4, 1/2)

need training cubic scaling only in-sample 
prediction

d
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intractablep(w |X, y) ∝
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∏
i=1

p(yi | f(xi; w))p(w)

Bayesian Neural Networks

…

Sun*, Zhang*, Shi*, Grosse. Functional variational Bayesian neural networks. ICLR 2019



Applications
Functional Bayesian Neural Networks

34

Locally smooth Periodic Piecewise constant

Exploration using 
posterior uncertainty in 

contextual bandits 

[Sun*, Zhang*, Shi* & Grosse, ICLR’19]



Applications

35

Gradient-free Hamiltonian Monte CarloLearning Wasserstein Autoencoders

[Shi et al., ICML’18][Zhou, Shi & Zhu, ICML’20]



Applications
Mutual Information Gradient Estimation

36

Performance of Learned Representations

[Wen et al., ICLR’20]



Concluding Remarks

• Gradient Estimation for Discrete Expectations


• Double control variates—a new framework for variance reduction in REINFORCE-type estimators

• Discrete Stein operators—a general recipe for constructing flexible control variates for discrete 
distributions

• Gradient Estimation for Intractable Densities


• Score estimation—a spectral approach and applications

Gradient estimation for differentiable programming in probabilistic models

37



Future Directions

• Score-based probabilistic modeling


• Parametric score estimators, e.g., sliced score matching


• Fit such estimators to data: score-based generative models

38

[Song, Garg, Shi, Ermon, UAI’20]

xScore Network∇log q(x)



Future Directions

• Gradient estimation for discrete expectations in structured models


• chains, temporal dependencies, state-space models


• exploit graphical structure to achieve further variance reduction 

39



Future Directions

• Structured data distribution, symmetry and invariance


• differentiable programming is good at exploiting invariance/equivariance 


• exploiting such properties in probabilistic inference?

40

[Sun, Shi, et al., ICML’21]
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