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Why Discrete Diffusion Models

« Generating discrete data with parallel sampling
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Why Discrete Diffusion Models

« Generating discrete data with parallel sampling
« Any-order reasoning
« A world model should facilitate reasoning in any directions

« AR models are built to follow a fixed order

~

This makes teaching Chinese literature, teaching Du Fu so much easier,” Ling explained.
“We all teach literature, but the tradition is different. Having that, it makes the teaching a
much more collaborative idea.” Wai-Yee Li, another professor of Chinese Literature, also
lauded the translation. “It's definitely not normal for Chinese speakers to have the same
chance to be exposed to books of a different language,” he said.

\ Infilling with our 400M masked diffusion model
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Why Discrete Diffusion Models

« Generating discrete data with parallel sampling
« Any-order reasoning
« Unification of modalities
« Continuous diffusion suffers on discrete data [Dieleman et al., 22; Gulrajani et al., 23]

- (We will show) discrete diffusion can work as well on inherently cont. data
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Dieleman et al. (2022). Continuous diffusion for categorical data.
Gulrajani & Hashimoto (2024). Likelihood-based diffusion language models.



Masked Diffusion

Also known as absorbing diffusion, first proposed in Austin et al. (2021) data
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Austin et al. (2021). Structured denoising diffusion models in discrete state-spaces.



Masked Diffusion

Forward process g(x, | x,)
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Masked Diffusion

Reverse process g(x, | x,, x,) (knowing x)
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Masked Diffusion Models

Generative model py(x, | x,) (not knowing x)
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MD4 Objective: Weighted Cross-Entropy Losses

Discrete-time Evidence Lower Bound (ELBO)

log pg(xg) = Ey, , 1xo[108 PO | X;1))] = KLAq (xy 7y [ X0) 1P (7)) = L7

T
< T= Z [Eq(xt(l.)| xo)[KL(CI (xs(i) |x;(i)a xo)”Pe(xs(i) |xz(i))]
=2

Continuous-time Negative ELBO (7' — o)

1 at/ .
L= [ T2 g5 37 Vo s 1

0 I —a
ay /(1 — ay)
1.0/ 0
_s5] —— linear
—— geometric
0.51 —-101 —— cosine
—— poly2
—151 —— poly0.5
0.01, i i i 1 _5p

0.00 025 050 0.75 1.00 0.00 025 050 0.75 1.00



GenMD4: State-dependent Schedules

Idea: Tokens are not created equal — make the probability of masking a token depend on
the token value

Before After
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« ELBO is a bit complicated in discrete time

« Good news: it significantly simplifiesas T — oo
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Perplexity on GPT-2 Zero-Shot Eval

Table 1: Zero-shot unconditional perplexity on five benchmark datasets from Radford et al. [43]. The
numbers for other methods are from Lou et al. [32] except our reimplementation of SEDD Absorb.
Our MD4 model achieves the best result on all benchmarks except LAMBADA where it is the second
best. *The GPT-2 numbers are reported for the GPT-2 checkpoint pretrained on WebText instead of
OWT thus is not a direct comparison.

Size Method LAMBADA  WikiText2 PTB  WikiText103 IBW
Small  GPT-2 (WebText)* 45.04 4243 13843 41.60 75.20
D3PM <9347 <7728 <200.82 <7516 <138.92
Plaid <5728 <5180 < 142.60 <5086 <91.12
SEDD Absorb <5092 <4184 <114.24 <4062 <7929
SEDD Absorb (reimpl.) <4973 <3894 < 107.54 <39.15 <7296
MD4 (Ours) <4843 <3494 <102.26 <3590 <68.10
Medium GPT-2 (WebText)* 35.66 31.80  123.14 31.39 55.72
SEDD Absorb <4277 <3104 <87.12 <2998 <61.19

MD4 (Ours) <44.12 <2584 < 66.07 <2584 <5145




Perplexity on OpenWebText Validation Set
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Masking Schedules Learned by GenMD4

Schedule for token type i: (a,); = 1 — ¢"i

Token types with largest ws (unmask first)

-

Token types with smallest ws
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Pixel-level Image Modeling

ImageNet 64x64

CIFAR-10
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Sampling
Number of Tokens Unmasked in Each Step
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« The masking schedule controls the the quantity of simultaneously predicted tokens.

« The cosine schedule that gradually increases parallel predictions works best.



ImageNet 64x64 Samples




Conditional Sampling (400M)

MD4-M linear skydiving is a fun sport, but it's pretty risky. Then some time on Saturday you should pretty

schedule You're getting is one to get last one for the much say: "This is what | am going to be doing
season if something goes wrong and it can right now." It's just the simplest thing—that is
happen you know, we know about season, why | always shampoo twice a day and shower
especially in Skydiving, but anybody that three times a day.

wins this year

MD4-M cosine skydiving is a fun sport, but it's extremely Though antibacterial products are a poison, the

schedule risky. You can have so many injuries one time skin needs a chemical solution that protects it
and then one next time. There are so many from bacteria and spots that form within it —
ways you can hurt, so, neuroconcussions, that is why | always shampoo twice a day and
especially from Skydiving, are continuing to shower three times a day.

rise every year



Three Interpretations of MD4

VDM (Kingma et al., 2021) version of D3PM (Austin et al., 2021)
« Continuous-time model

« Simplification as weighted cross-entropy loss

Adaptation of CTMC ELBO (Campbell et al., 2022) to enable low-variance estimate
« Campbell et al. (2022) requires multiple NN passes—estimation has high variance

« Applying discrete “integration-by-part” fixes this

Mean parameterization counterpart of score parameterization (Lou et al., 2023)

« Score parameterization breaks consistency between forward & reverse processes

Kingma et al. (2021). Variational diffusion models.
Campbell et al. (2022). A continuous time framework for discrete denoising models.
Lou et al. (2023). Discrete diffusion language modeling by estimating the ratios of the data distribution.
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Takeaways

« Masked diffusion model is a promising candidate for world models that can reason in any modality
& order.

« MD4 & GenMD4 make it simple, performant and scalable.

« MD4 provides a new perspective on discrete diffusion & any-order AR models

« Masking schedule as a new degree of freedom that enables effective parallel sampling

Paper:

Simplified and Generalized
Masked Diffusion for Discrete Data
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Slides: jiaxins.io Kehang Han Zhe Wang Arnaud Doucet  Michalis K. Titsias

Jiaxin Shi*, Kehang Han", Zhe Wang, Arnaud Doucet, Michalis K. Titsias
Google DeepMind
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Appendix



Are Masked Diffusion Just Any-Order AR Models?

Yes, but a new dimension of freedom

« Masking schedules control parallel
sampling bandwidth

CDF of the jump times:
P(z(n) <) = Px™ =m)=1-aq,
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Masking Schedules




Score v.s. Mean Parameterization

q,.J)
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Proposition 1. The discrete score s(x,, t)j =

o

s(m, t)j =

t
See also concurrent work based on this (Ou et al, 2024)

Implications
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. True score satisfies the constraint Z#m s(m, 1); = —— "

for x, = mandj # m can be expressed as

Elxg|x, = m]Tej
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mean parameterization fixes
the problem

o

Sg(m, t)J — //le(m, t)J
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« Score parameterization breaks this and leads to inconsistency between forward & reverse processes



Mean Parameterization in GenMD4

« The reverse process now has a quadratic dependence on X,

T T
q(xs|ry = m,zo, 02, ) = (l—at) roe, Ts+ (—1—att) ToTy Ts

+ Fortunately, E[zz |7;] = diag(E[zg|x:]) so we can reuse the mean prediction

model to parameterize py(x; | x,)



Text8 Benchmark

Method BPC ()

Continuous Diffusion

Plaid [22] (Our impl.) <1.48

BFN [26] <141

Any-order Autoregressive . : :
ARDM [48] <143 A (very) challenging character-level language modeling
MAC [49] < 1.40 benchmark

Autoregressive « SEDD previously reported 1.32 but turns out incorrect
IAF/SCF [50] 1.88

AR Argmax Flow [15] 1.39 « We were the best among diffusion and any-order AR
Discrete Flow [51] 1.23

Transformer AR [14] 1.23 - Still a gap between diffusion and AR

Discrete Diffusion

Mult. Diffusion [15] <172

D3PM Uniform [14] <1.61

D3PM Absorb [14] <145

SEDD Absorb [32] <141

MD4 (Ours) <1.37

GenMD4 (Ours) < 1.34




The CTMC View

Get transition rate matrices from our results:
Q(t,t+ At) =T+ Q(t)At +o(At) for Q(t) = B(t)(1e) —I),
Oé/

R (t,t — At) = I + R™()At + o(At) for R™(t) 2 —

T
Emlxo — €
1 — o m( 0 m)
Plugging this into £, and applying discrete “integration-by-part” recovers Campbell et al. (2022)’s loss
1
- / Bgiy0(klzo) [Re(t)kk + Z Q(t)1; log Ry (t)jk} dt +C
tH1) J#k
Problems of this expression:

« It needs | V| NN passes to compute the inner sum

- Estimation via sampling j has high variance



Infilling Example (400M)

MD4-M linear
schedule

MD4-M cosine
schedule

This makes teaching Chinese literature, teaching Du Fu so much easier,” Ling Fu said.
“The vocabulary is different, the tradition is different. Having that, it gives the ability to
teach Du Fu language.” Wai-Yee Li, another professor of Chinese Literature, also lauded
the translation. He recommended Du Fu books as a guest lecturer several years ago.

This makes teaching Chinese literature, teaching Du Fu so much easier,” Ling explained.
“We all teach literature, but the tradition is different. Having that, it makes the teaching a
much more collaborative idea.” Wai-Yee Li, another professor of Chinese Literature, also

lauded the translation. “It’s definitely not normal for Chinese speakers to have the same
chance to be exposed to books of a different language,” he said.



